
On the quasi-periodic solutions to the discrete nonlinear Schrodinger equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 293

(http://iopscience.iop.org/0305-4470/20/2/015)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 05:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen.  20 (1987) 293-303. Printed in the U K  
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Abstract. We have obtained the quasi-periodic ~ o l u t i o n s  to the discrete non-linear Schrodin- 
ger equation (r)NLsE) by a variant of a method due  to Date and Tanaka.  I t  is shown 
explicitly that the non-linear field variables at the different lattice points can be determined 
in a recursive fashion in terms of combinations of Reimann's 0 functions depending on  
lattice position and  time. 

1. Introduction 

Periodic solutions to non-linear partial differential equations have attracted the atten- 
tion of researchers over the last decade. Initial studies of the properties of such 
non-linear equations were confined to continuous versions of these equations [ 11. The 
importance of discrete non-linear equations and their study was initiated by the 
pioneering paper of Ablowitz and Ladik [2], where the discrete counterpart of the 
A K N S  system was discussed and the corresponding inverse problem for the asymptoti- 
cally zero boundary condition formulated. The periodic inverse problem for discrete 
systems, on the other hand, has received comparatively less attention from researchers. 

In the continuous case we have the well known formulation of Kreiechver [3 J and 
Dubrovin [4], based on algebraic geometry. Two other important formalisms are those 
of Date and Tanaka [5] and Forest and McLaughlin [6]. An initial attempt at studying 
the periodic inverse problem for the Toda lattice was made by Kac and Van Moerveke 
[7]. Some results for the periodic spectral problem for the discrete Laplacian were 
also obtained by Kat0 [8], but the corresponding formalism is quite complicated. Here 
we have shown that an analogue of the formalism of references [5] and [6] can lead 
to an elegant formulation of the inverse problem for the discrete non-linear Schrodinger 
equation. 

2. The DNLSE and the inverse problem 

The equation under consideration is [9] 

iqn, = ( A X ) - % I n + l + q n - I  - 2 q , ) * 9 , 9 ~ ( q , + , + q , - , ) .  

U " + I  = F , , ( Z ) U , ,  

at.,/at = G,(z)u, 

The equations for the inverse problem are [9] 
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where F , ( z ) ,  G,(z)  are matrices; 

and U, is a two-component vector (uln,  u ? ~ ) .  The consistency between (3) and (4) is 
equivalent to (1) and is written as 

d F , l d t =  G , + l F ,  - F,G,. (5) 
We now assume that the non-linear field q, obeys the periodic boundary condition 
q n + N + l  = q, with period N + 1, where N is an arbitrary non-negative integer. The 
inverse problem for the periodic sine-Gordon system as formulated in [6] starts with 
the equations satisfied by the square eigenfunction associated with the Lax equation. 
We show here that if we consider the analogue of the monodromy matrix (as considered 
by Date and Tanaka in the continuous case) for the discrete case, then the matrix 
elements of the monodromy matrix d o  possess properties similar to those of square 
eigenfunctions and these properties can be properly exploited to formulate the inverse 
problem for the periodic case in an effective manner. 

From the first equation of ( 2 )  we observe that F,, can be interpreted as the transfer 
matrix over the single lattice site. Let us now construct tfie translation operator Hn ( z )  
over the total period as 

where the curved arrow indicates the order of increase of the indices in the product. 
It is to be noted that the monodromy matrix H n ( z )  satisfies the equations 

Hn+lFn = FnHn 
(8)  d H , / a t  = G , H ,  - H,,G,. 

The matrix H ,  is such that 

det H ,  = det H,,, 

S p  H,, = Sp H,,, 
( d l d t )  det H ,  = 0 

( a l a t )  s p  H ,  = o n , m = 0 , 1 , 2  . . . .  

(9) 
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We now propose to write H , ( z )  as 

whence condition (8) leads to 

Before proceeding further we demonstrate that these two definitions of H , ( z )  (one 

Let us consider the case where the lattice period N = 1 (in the appendix we give 
through equation ( 7 )  and the other with the help of (10)) are actually consistent. 

results for the case where N = 2).  Then from equation ( 7 )  we obtain 

Now let us change n to n + l  and use the periodicity q,+?=qn (for N = 1 ) .  This 
immediately leads to 

4 n + l =  4 n  

If we now substitute the values of g,+, and h,  in the first equation of ( 1  l ) ,  it reproduces 
z(f,+' - f n )  given by (14). The same conclusion is valid for other elements also. The 
proof is easily extended for any other values of N. 

We now evaluate the time evolution of (f,, g,, h,) which are given as 
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3. Solution of the periodic inverse problem 

From the procedure laid down in the papers of Date and Tanaka, and  Forest and 
McLaughlin it is evident that the success of the whole procedure depends crucially 
on the series expansion of the square eigenfunction in powers of 2 (the eigenvalue). 

To proceed further we note that 

so thatf’, - g,h, = P(z‘) is independent of both n and  1. An identical situation occurred 
in reference [6] where they showed that f2-gh is independent of both x and t in the 
continuous case. Property (16) further clarifies the similarity of our set ( f n ,  g,, h,) 
with the square eigenfunctions of the continuous case. With these comments in mind 
we now represent the function P(z’)  as 

? N + 2  ?”? 

K = O  ] = I  
p ( z ’ ) =  c PKZZK = P:y+2  n ( 2 2 4 , )  

so that E, are the zeros of P(z’ ) .  Now we try a polynomial solution for f,,, g,, h, in 
the form 

N 

g n ( z ,  t )  = c g : K ) ( t ) z 2 K + 1  
K =O 

N 

h , (z ,  t ) =  1 h!,K’(t)z’Kt‘ 
K = O  

Substituting these expansions in (1 1)  and (15) and comparing various powers of z we 
obtain 

(19) 
f;y:il= fAN’l1 

fA2i- f l “ ’ = ( A X ) ( r q f g j p ~ i + q , h j p ) ) .  

Furthermore from the equation sets (11) and (15) we can easily deduce 
qn = -gjlN1/2Axf, ,  ( N + i l  

gk0Ji= AXqn(f iP : i+fLO’) .  
Also by equating the coefficients of zZizI+‘ we obtain 

q:-l = r h ~ ” / 2 A ~ f ~ ’ ~ ~ ~ ~  

along with 

- h ~ ” = T q f A X ( f l P : , + f i P ’ ) .  
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Utilising (19)-(21) we can deduce 
IO1 - ( 0 )  

f n + l - f n  . 
At this stage it is not out of place to comment that equations for qn and 9:-1 in (20) 
and (21) will serve as the base of the inverse problem once the functions g',"', h'", 
f!,"" are known from some other sources. 

4. Further properties of the set (f., g,, , h,,) 

Let us now consider the expansions of the func t ionsE(z* ,  t )  andfn(Z1, t )  in the form 
N + I  

K = O  

M + I 
f n (Z1 ,  t )  = C f L K ) Z Z K .  

K =O 

It is evident that 

fn* (z* ,  t )  = -c(z)fn(z',  t )  (23)  

with 

c ( z )  = Z 2 ( h + l '  f : i K ) =  - f i N + l - K i  (24) 

We now postulate the existence of zeros of the function g,(z, t )  in the complex z plane 
and write it in the following form: 

N 

g,(t, z)=zgL" n ( z ' - p l ( n ,  t ) )  
1 - 1  

- - g L K i Z 2 k + l  

h O  

From the two relations of ( 2 5 )  we have immediately 
4 

g::!=gL"(-1)' n p l ( n ,  t )  
1 - 1  

along with 

g',"' = Zhxq,, I f;;". 

Now from the complex conjugate of equation ( 2 1  ) we have 

2Axq , , - ,  = Th"" / . f : ' T 1 l v .  

Hence 

n VLO ' gip' = T(h(\!*/fy Ll* 

h 

= g ? ' ( - l ) N  n p,(n, t )  
1 - 1  

or  
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Using ( 2 0 )  and (21)  we obtain 

so finally we obtain 

or 
( N + I )  N n p,(n, t ) .  ( 2 8 )  

Equation ( 2 8 )  is of central importance in our inversion scheme. Since this formula 
suggests that once the position of the zeros p,(n,  t )  are known as functions of n and 
t then the lattice field at the nth position obeys a recursion relation in terms of those 
at the ( n  - 1)th position and  pJ (n ,  t ) .  

N + l  f n  
q n - I  = % ( - I )  f A o l  , = I  

5. Equation of motion for pj(n, t )  

To deduce the equation which governs the behaviour of pj(n, t )  we start by equating 
coefficients of z2N+1 on both sides of the second equation of (15) to obtain 
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and finally can be converted to the form 

We now use the original non-linear difference equation with n shifted by one: 

Equating the two expressions for aq,-l/at we arrive at 
N 

q n  + q n - I  1 t )  = *qn-1[3qn-Iqf-,(Ax)* 
, = I  

- q f - 1 qn (Ax )2  7 P2 ,w + 1 / 2 pz N + 2 1 .  (32) 

Equation (32) will also be useful for the inversion problem. We now use equation 
(25) in the equation for gn(z, t )  to obtain 

Setting z2 = pJ we obtain 

Equation (33) gives a set of non-linear ordinary differential equations for the motion 
of the zeros (p,(n, 1 ) ) .  This flow can be straightened out by exploiting the fact that 
each pl resides on the Riemann surface of 

Z N + ?  

R ' ( E ) =  n ( E - E , ) .  - -  
j - I  

We define N Abelian differentials of the first kind on i t  by 

C V I E N - ' + .  . . + C V N d E  du, = v =  1 ,2 , .  .., N. 
R ( E )  

(34) 

The matrix of the constants C,, are fixed in terms of {E, }  and the normalisation 
conditions 

du, = S,, 
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while the ‘b’ cycle defines the period matrix: 

BPv= du,. I, 
On the Riemann surface designated in this mann r, equation (33) can be writt n as 

We now follow the traditional path to define some functional on this Riemann surface 
through 

from which we deduce 

With the help of standard Lagrange interpolation formulae it can be seen that these 
summations over pi are really very simple. Instead of the general case we indicate 
here the result for two p, p,  and p2 ,  where we obtain 

for the case N = 2. f:”/f!,”= -1 (as shown in the appendix). Thus 

Hence we have a linear flow given as 

Similar considerations hold also for I j ( p I ,  p 2 . .  . . , pN)  and we have 

Now the solutiuon for the pi can be obtained by the well known Jacobi inverse problem. 

6. Explicit form of the solution 

From our previous discussions we observe that the periodic non-linear field at the nth 
lattice point defined to be qn satisfies the elegant recursion relation (28)  with p,(n,  t )  
satisfying (33). 
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There is also another algebraic connection between p,(n,  t ) ,  qn and qn-I  given by 
equation (32). All these equations involve some symmetric functions of the zeros 
p,(n, t ) .  It is interesting to note that these symmetric functions of p , ( n ,  t )  can be 
expressed in terms of combinations of Riemann 8 functions. Since this result is now 
quite standard [5] we will quote the result and use it in the following. 

It is known that 

where the vectors a, y, 6, a, etc, are defined as 
I v 

6, = U ] ( O )  r1 = c u, (P , ,  O ) + $  B,, -: 
, = I  , = I  

a, = U,(=) U, = 1 du, dz  

B,, = f b ,  du , ( z )  ff, = C,,”/fn,,. 

We now set 

Using these with equation (32) we can eliminate qn- l  and solve for (qn(‘  as 

( - 1 ) N + I $ - l + x  + p ’  
I q n ” =  * ( - 1 ) N ” ( A x ) 2 $ * ( 3 1 ~ 1 2 -  1 )  

where 

P ‘  = P2Nt1/2PZNf2. 

It is useful to remember that this formula is valid for N-phase periodic waves in general. 

7. Discussion 

In the formalism presented above we have tried to obtain the solution to the periodic 
inverse problem of non-linear difference equations. Our approach is to harness the 
similarity between the monodromy matrix (defined through the transfer matrix at each 
lattice site) and the square eigenfunctions defined in the continuous case. We have 
discussed in detail the special situations for the lattice periods N = 1 and  N = 2 and 
have shown that the general properties can be ascertained in these particular cases. 
The expansion of the elements of the monodromy matrix in terms of the eigenvalue 
parameter Z explicitly determines the motion of the zeros p , ( n ,  t )  in time. By the help 
of the Abelian mapping such flows can be straightened out and the whole problem 
reduces to the solution of an  Abelian inversion of the elliptic or theta functions, as in 
the continuous situations. 



302 S Ahmad and A Roy Chowdhury 

Acknowledgment 

In the original version of this paper there were some mistakes and the authors are 
grateful to the referee for his constructive-criticism and  for pointing out these defects. 

Appendix. Properties of the functions A"'( t) ,  g!,"'( t )  and hiK'( 1 )  

The following relations are seen to hold: 

f ; ( z * ,  t )  = - Z Z ( N + l )  fn(f l ,  t )  

g : ( z * ,  1 )  = *z2"+1)hn(2',  t )  

h:(z*,  t )  = * z Z " + ' ) g n ( T 1 ,  1). 

Using the expansions (18) equating the coefficients from the above equations, it is easy 
to obtain 

f i K ) * ( f )  = - f i N + l - K )  ( t )  

g L K ) * ( t )  = f h ( , N - K ) ( t )  

h',K'*( t )  = *g',"-")( t ) .  

Let us illustrate the above properties for the case N = 2 .  In this case 

H" (2) = Fn +A z 1 F, + I ( z )  F, ( z )  
or 

/z' 7 ~ q , , + ~ q : ( A x ) ' 7  z q ~ + l q , + 2 ( A x ) '  z'q, ,Ax+ q n t l A x  + .f'q,+,Ax \ 

If we identify z 'H,  as the monodromy matrix we have 



On quasi-periodic solutions to the DNLSE 

References 

[ l ]  Bullough R K and Caudrey P J (ed) 1980 Solitons (Berlin: Springer) 
[2] Ablowitz M J and Ladik J F 1975 1. Mafh. Phys. 16 598; 1976 J. Math. Phys. 17 1011 
[3] Kreiechver I M 1975 Funcf. Anal. Appl. 9 105 
[4] Dubrovin B A 1975 Funct. Anal. Appl. 9 215 
[5] Date E and Tanaka S 1976 Suppl. Prog. Theor. Phys. 59 107 
[6] Forest G and McLaughlin D W 1982 J. Math. Phys. 23 1248 
[7] Kac M and, Van Moerveke P 1975 Proc Narl Acad. Sci. USA 72 1927 
[8] Kat0 Y Proc. RIMS Symp. ed M Jibo and T Micoa 
[9] Ablowitz M J and Segur H Solitons and Inverse Scarfering Transforms (Philadelphia: SIAM) 

303 


